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Introduction: There is more image data available
to planetary scientists now than at any time in history.
The problem now is how to best make use of it. It is
impractical to analyze such large datasets manually,
while development of handwritten feature extraction
tools is expensive and laborious. This project explores
the use of machine learning techniques to develop
feature extraction algorithms for the Mars Orbiter
Camera (MOC) narrow angle dataset using the Los
Alamos GENIE machine learning software. GENIE,
the GENetic Image Exploitation package, uses a ge-
netic algorithm to assemble feature extraction algo-
rithms from low-level image operators. Each algorithm
is evaluated against user-provided training data, and
the most accurate ones are allowed to "reproduce” to
build the next generation. The algorithm population
evolves until it converges to a solution or specified
level of accuracy.

Mars Global Surveyor (MGS) [1] has been on orbit

around Mars since 1997. It carries many scientific
instruments including the Mars Orbiter Camera (MOC)
[2]. The narrow angle dataset, the focus of this study,
provides imagery with a spatial resolution of order 3
meters/pixel and is sensitive to light in a broad visi-
ble/near-infrared spectral range (0.50um — 0.90um).
Since arriving at Mars, MOC has taken over 112,000
images, which have been used to study various plane-
tary processes. Craters were selected as the feature of
interest for this study because they are a discrete, eas-
ily recognizable feature that can be used to derive
much information about a surface [3-4].
GENIE: Los Alamos National Laboratory’s GENIE
software [5] uses techniques from genetic algorithms
(GA) [6-8] and genetic programming (GP) [9] to con-
struct spatio-spectral feature extraction algorithms for
multi-spectral remotely sensed imagery. Both the al-
gorithm structure and the parameters of the individual
image processing steps are learned by the system.
GENIE has been described at length elsewhere [10-
12], so we will only present a brief description here. In
particular, the present work explores using GENIE on
panchromatic imagery [13-14].

GENIE follows the paradigm of genetic program-
ming: a population of candidate image-processing al-
gorithms is randomly generated from a collection of
low-level image processing operators. The fitness of
each individual is assessed from its performance on
training data provided by the human user via a graphi-

cal interface. Our fitness metric measures the total er-
ror rate (false positives and false negatives) on the
feature extraction task. After a fitness value has been
assigned to each candidate algorithm, the most fit
members of the population reproduce with modifica-
tion via the evolutionary operators of mutation and
crossover. This process of fitness evaluation and re-
production with modification is iterated until the
population converges, some desired level of classifica-
tion performance is attained, or some user-specified
limit on computational effort is reached. The final re-
sult is a gray-scale enhancement of the feature of inter-
est, which is then converted into a final Boolean classi-
fication using a threshold [15].

Several different algorithms are evolved separately
in this manner. Their individual results are then com-
bined to form a final answer in a “voting” process.
GENIE’s genetic algorithm is a stochastic learning
process, so individual results are likely to be highly
variable in structure. The binary classification outputs
of these classifiers is then summed and thresholded at
whatever level we choose to define the joint decision.
In general, a simple majority rule is adopted, though if
the classifiers are noisy, a unanimous rule decision
may also be adopted.

GENIE Results: We selected a training image,
MOC image MO0803054 [16], near Louros Valles
(8.5S, 82.0W), to present a reasonably homogeneous
terrain marked by a number of bowl shaped craters
obvious to the human eye. GENIE was trained on the
first 930 rows of pixels in the image (the image is 830
pixels wide) with a truth file based on manual analysis
(Fig. 1) in which the analyst has marked some of the
fresh, bowl shaped craters in the scene as true, and
some of the protruding surface features and non-
cratered terrain as false. The next 970 rows of this
scene were also marked by hand, and kept back to
serve as our Test Scene (Fig. 2).

GENIE was run 6 times, each time with a new
population of 30 algorithms per generation, each run
lasting for 50 generations. Running on standard In-
tel/Linux workstations, each run required 1 hour of
wall-clock time. The best individual crater finding al-
gorithm achieved a detection rate of 99% and a false
alarm rate of 3%. On the test data, the performance of
this algorithm dropped slightly.

The results of the various algorithms were then
combined in three different voting schemes (Table 1)
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[17]. Classifier “Vote 1” gives the results achieved by
a majority vote with contributions from all six classifi-
ers. As expected, the false alarm rate reported by the
voting set is substantially lower than the false alarm
rate reported by any individual algorithm on either
scene. Results of this vote raise the question, how
much of the behavior of this classifier is due to the
good individual algorithm? Classifier “Vote 2” gives
the results achieved by a majority vote with contribu-
tions from all classifiers except the strongest individual
algorithm. Classifier “Vote 3” shows the result of
adopting a “unanimous” voting decision rule for the
all-component “Vote 17 classifier. For application
where achieving low false alarm rate is paramount, this
is a superior classifier. The extent to which this low-
noise classifier can be used as the initial stage of a
geometric-based extraction of craters as objects, will
be the subject of future work.

Training Scene Test Scene
Class. D.R. F.AR. | D.R. F.AR.
Best ind. 98.94 3.00 94.76 2.74
Vote 1 97.31 1.24 94.33 2.34
Vote 2 97.48 2.97 94.77 7.59
Vote 3 84.83 0.15 84.38 0.52

Table 1. Results of best individual algorithm and vot-
ing on training and test data. D.R. is percent detection
rate, and F.A.R. is percent false alarm rate.
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Figure 1. MOC Image M0803054: Training Scene,
User-generated Training Data, result of first majority
vote.

Figure 2. MOC Image M0803054: Tst Scene 1,
result of first majority vote.

Future Work: These results would be greatly im-
proved by the ability to take parameters such as angle
of illumination into account, and by the conversion of
graphical detections into numerical results. We plan to
experiment with a variety of post processing tools to
this end. It would also be useful to compare GENIE
results to manual results on comprehensive hand cata-
logued datasets.

This research presently focuses on Mars cratering
as a testbed, but has obvious broader applications to
other questions of planetary science, including analysis
of cratering rates on satellites of Jupiter and Saturn,
discernment of primary from secondary crater fluxes,
recognition of apex-antapex impact asymmetries, and
analysis of other landforms such as fractures in Eu-
ropa’s lithosphere, detection of changes over time on
active planets such as lo, and location of landforms
such as dune fields and mineral outcrops.

Conclusion: This study investigated the evolution
of a voting set of crater finding algorithms for applica-
tion to the Mars Orbiter Camera narrow angle dataset.
We described the results on training and test images.
The algorithms are successful at detecting craters
within the images, and generalize well to an image that
they have not seen before. We find these results to be
encouraging for the application of GENIE to the MOC
panchromatic dataset.
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